Artificial Intelligence

Structures and Strategies for Complex Problem Solving

George F Luger & William A Stubblefield

ADDISON-WESLEY

1998 Addisin Wesley Longman

CONTENTS

Preface vii

PART I

ARTIFICIAL INTELLIGENCE: ITS ROOTS AND SCOPE

Artificial Intelligence—An Attempted Definition 1

1 AI: HISTORY AND APPLICATIONS 3

- 1.1 From Eden to ENIAC: Attitudes toward Intelligence, Knowledge, and Human Artifice 3
 - 1.1.1 Historical Foundations 4
 - 1.1.2 The Development of Logic 7
 - 1.1.3 The Turing Test 10
 - 1.1.4 Biological and Social Models of Intelligence: Agent-Oriented Problem Solving 13
- 1.2 Overview of AI Application Areas 17
 - 1.2.1 Game Playing 18
 - 1.2.2 Automated Reasoning and Theorem Proving 19
 - 1.2.3 Expert Systems 20
 - 1.2.4 Natural Language Understanding and Semantic Modeling 22
 - 1.2.5 Modeling Human Performance 23

	1.2.0 I family and Robotics 25
	1.2.7 Languages and Environments for AI 25
	1.2.8 Machine Learning 25
	1.2.9 Parallel Distributed Processing (PDP) and Emergent Computation 26
	1.2.10 AI and Philosophy 27
1.3	Artificial Intelligence—A Summary 28
1.4	Epilogue and References 29
1.5	Exercises 30
AR	RT TIFICIAL INTELLIGENCE AS REPRESENTATION D SEARCH
Know	rledge Representation 34
Proble	em Solving as Search 41
2	THE PREDICATE CALCULUS 47
2.0	Introduction 47
2.1	The Propositional Calculus 47
	2.1.1 Symbols and Sentences 47
	2.1.2 The Semantics of the Propositional Calculus 49
2.2	The Predicate Calculus 52
	2.2.1 The Syntax of Predicates and Sentences 52
	2.2.2 A Semantics for the Predicate Calculus 58
2.3	Using Inference Rules to Produce Predicate Calculus Expressions 64
	2.3.1 Inference Rules 64
	2.3.2 Unification 68
	2.3.3 A Unification Example 72
2.4	Application: A Logic-Based Financial Advisor 75

2.5	Epilogue and References 79
2.6	Exercises 79
3	STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH 81
3.0	Introduction 81
3.1	Graph Theory 84
	3.1.1 Structures for State Space Search 84 3.1.2 State Space Representation of Problems 87
3.2	Strategies for State Space Search 93
	3.2.1 Data-Driven and Goal-Driven Search 93 3.2.2 Implementing Graph Search 96 3.2.3 Depth-First and Breadth-First Search 99 3.2.4 Depth-First Search with Iterative Deepening 106
3.3	Using the State Space to Represent Reasoning with the Predicate Calculus 107
	3.3.1 State Space Description of a Logical System 107 3.3.2 And/Or Graphs 109 3.3.3 Further Examples and Applications 111
3.4	Epilogue and References 121
3.5	Exercises 121
4	HEURISTIC SEARCH 123
4.0	Introduction 123
4.1	An Algorithm for Heuristic Search 127
	 4.1.1 Implementing "Best-First" Search 127 4.1.2 Implementing Heuristic Evaluation Functions 131 4.1.3 Heuristic Search and Expert Systems 136
4.2	Admissibility Monotonicity and Informedness 120

2.5

-75 411 47	· ·	
5.7	Exercises 199	
5.6	Epilogue and References 198	
5.5	The Blackboard Architecture for Problem Solving 196	
5.4	Predicate Calculus and Planning 186	
	5.3.4 Advantages of Production Systems for AI 184	
	5.3.3 Control of Search in Production Systems 180	
	5.3.2 Examples of Production Systems 174	
	5.3.1 Definition and History 171	
5.3	Production Systems 171	
	5.2.2 Refining the Pattern-search Algorithm 168	
	5.2.1 Example: Recursive Search in the Knight's Tour Problem 165	
5.2	Pattern-Directed Search 164	
	5.1.2 Recursive Search 161	
	5.1.1 Recursion 160	
5.1 Recursion-Based Search 160		
5.0	Introduction 159	
5	CONTROL AND IMPLEMENTATION OF STATE SPACE SEARCH 1	59
4.6	Exercises 156	
4.5	Epilogue and References 156	
4.4	Complexity Issues 152	
	 4.3.1 The Minimax Procedure on Exhaustively Searchable Graphs 144 4.3.2 Minimaxing to Fixed Ply Depth 147 4.3.3 The Alpha-Beta Procedure 150 	
4.3	Using Heuristics in Games 144	
	4.2.3 When One Heuristic Is Better: More Informed Heuristics 142	
	4.2.2 Monotonicity 141	
	4.2.1 Admissibility Measures 139	

PART III

REPRESENTATIONS FOR KNOWLEDGE-BASED PROBLEM SOLVING

U	KINOW	LEDGE-INTENSIVE PROBLEM SOLVING 207
6.0	Introduc	ction 207
6.1	Overvie	w of Expert System Technology 210
	6.1.1	The Design of Rule-Based Expert Systems 210
	6.1.2	Selecting a Problem for Expert System Development 212
	6.1.3	The Knowledge Engineering Process 214
	6.1.4	Conceptual Models and Their Role in Knowledge Acquisition 216
6.2	Rule-ba	sed Expert Systems 219
	6.2.1	The Production System and Goal-driven Problem Solving 220
	6.2.2	Explanation and Transparency in Goal-driven Reasoning 224
	6.2.3	Using the Production System for Data-driven Reasoning 226
	6.2.4	Heuristics and Control in Expert Systems 229
	6.2.5	Conclusions: Rule-Based Reasoning 230
6.3	Model-	based Reasoning 231
	6.3.1	Introduction 231
6.4	Case-ba	ased Reasoning 235
	6.4.1	Introduction 235
6.5	The Kn	owledge-Representation Problem 240
6.6	Epilogu	ne and References 245
67	Exercis	es 246

7 REASONING WITH UNCERTAIN OR INCOMPLETE INFORMATION 247

7.0	Introduction 247
7.1	The Statistical Approach to Uncertainty 249
	7.1.1 Bayesian Reasoning 250
	7.1.2 Bayesian Belief Networks 254
	7.1.3 The Dempster-Shafer Theory of Evidence 259
	7.1.4 The Stanford Certainty Factor Algebra 263
	7.1.5 Causal Networks 266
7.2	Introduction to Nonmonotonic Systems 269
	7.2.1 Logics for Nonmonotonic Reasoning 269
	7.2.2 Logics Based on Minimum Models 273
	7.2.3 Truth Maintenance Systems 275
	7.2.4 Set Cover and Logic Based Abduction (Stern 1996) 281
7.3	Reasoning with Fuzzy Sets 284
7.4	Epilogue and References 289
7.5	Exercises 290
0	KNOWLEDGE REPRESENTATION 293
8	KNOWLEDGE REPRESENTATION 293
8.0	Knowledge Representation Languages 293
8.1	Issues in Knowledge Representation 295
8.2	A Survey of Network Representation 297
	8.2.1 Associationist Theories of Meaning 297
	8.2.2 Early Work in Semantic Nets 301
	8.2.3 Standardization of Network Relationships 303
8.3	Conceptual Graphs: A Network Representation Language 309

Introduction to Conceptual Graphs 309

8.3.1

	8.3.2	Types, Individuals, and Names 311
	8.3.3	The Type Hierarchy 313
	8.3.4	Generalization and Specialization 314
	8.3.5	Propositional Nodes 317
	8.3.6	Conceptual Graphs and Logic 318
8.4	Structu	red Representations 320
	8.4.1	Frames 320
	8.4.2	Scripts 324
8.5	Issues in	n Knowledge Representation 328
	8.5.1	Hierarchies, Inheritance, and Exceptions 328
	8.5.2	Naturalness, Efficiency, and Plasticity 331
8.6	Epilogu	e and References 334
8.7	Exercise	es 335

PART IV

LANGUAGES AND PROGRAMMING TECHNIQUES FOR ARTIFICIAL INTELLIGENCE

Languages, Understanding, and Levels of Abstraction 340

Desired Features of AI Language 342

An Overview of LISP and PROLOG 349

Object-Oriented Programming 352

Hybrid Environments 353

A Hybrid Example 354

Selecting an Implementation Language 356

CONTENTS

xxi

9.0	Introdu	action 357
9.1	Syntax	for Predicate Calculus Programming 358
··-	2,11001	707 7 10 H 10 10 10 10 10 10 10 10 10 10 10 10 10
	9.1.1	Representing Facts and Rules 358
	9.1.2	Creating, Changing, and Monitoring the PROLOG Environment 362
	9.1.3	Recursion-Based Search in PROLOG 364
	9.1.4	Recursive Search in PROLOG 366
	9.1.5	The Use of Cut to Control Search in PROLOG 369
9.2	Abstra	ct Data Types (ADTs) in PROLOG 371
	9.2.1	The ADT Stack 371
	9.2.2	The ADT Queue 373
	9.2.3	The ADT Priority Queue 373
	9.2.4	The ADT Set 374
9.3	A Prod	luction System Example in PROLOG 375
9.4	Design	ing Alternative Search Strategies 381
	9.4.1	Depth-First Search Using the Closed List 381
	9.4.2	Breadth-First Search in PROLOG 383
	9.4.3	Best-First Search in PROLOG 384
9.5	A PRO	OLOG Planner 386
9.6	PROL	OG: Meta-Predicates, Types, and Unification 389
	9.6.1	Meta-Logical Predicates 389
	9.6.2	Types in PROLOG 391
	9.6.3	Unification, the Engine for Predicate Matching and Evaluation 394
9.7	Meta-I	Interpreters in PROLOG 397
	9.7.1	An Introduction to Meta-Interpreters: PROLOG in PROLOG 397
	9.7.2	Shell for a Rule-Based Expert System 401
	9.7.3	Semantic Nets in PROLOG 410
	9.7.4	Frames and Schemata in PROLOG 412

AN INTRODUCTION TO PROLOG 357

9

9.8	PROLOG: Towards Nonprocedural Computing 415
9.9	Epilogue and References 421
9.10	Exercises 422
10	AN INTRODUCTION TO LISP 425
10.0	Introduction 425
10.1	LISP: A Brief Overview 426
	10.1.1 Symbolic Expressions, the Syntactic Basis of LISP 426
	10.1.2 Control of LISP Evaluation: quote and eval 430
	10.1.3 Programming in LISP: Creating New Functions 431
	10.1.4 Program Control in LISP: Conditionals and Predicates 433
	10.1.5 Functions, Lists, and Symbolic Computing 436
	10.1.6 Lists as Recursive Structures 438
	10.1.7 Nested Lists, Structure, and car/cdr Recursion 441
	10.1.8 Binding Variables Using set 444
	10.1.9 Defining Local Variables Using let 446
	10.1.10 Data Types in Common LISP 448
	10.1.11 Conclusion 449
10.2	Search in LISP: A Functional Approach to the Farmer, Wolf, Goa and Cabbage Problem 449
10.3	Higher-Order Functions and Procedural Abstraction 455
	10.3.1 Maps and Filters 455
	10.3.2 Functional Arguments and Lambda Expressions 457
10.4	Search Strategies in LISP 459
	10.4.1 Breadth-First and Depth-First Search 459
	10.4.2 Best-First Search 462
10.5	Pattern Matching in LISP 463
10.6	A Recursive Unification Function 465

	10.6.1 Implementing the Unification Algorithm 465
	10.6.2 Implementing Substitution Sets Using Association Lists
10.7	Interpreters and Embedded Languages 469
10.8	Logic Programming in LISP 472
	10.8.1 A Simple Logic Programming Language 472
	10.8.2 Streams and Stream Processing 474
	10.8.3 A Stream-Based Logic Programming Interpreter 477
10.9	Streams and Delayed Evaluation 482
10.10	An Expert System Shell in LISP 486
	10.10.1 Implementing Certainty Factors 486
	10.10.2 Architecture of lisp-shell 488
	10.10.3 User Queries and Working Memory 490
	10.10.4 Classification Using lisp-shell 491
10.11	Network Representations and Inheritance 494
	10.11.1 Representing Semantic Nets in LISP 494
	10.11.2 Implementing Inheritance 497
10.12	Object-Oriented Programming Using CLOS 497
	10.12.1 Defining Classes and Instances in CLOS 499
	10.12.2 Defining Generic Functions and Methods 501
	10.12.3 Inheritance in CLOS 503
	10.12.4 Advanced Features of CLOS 505
	10.12.5 Example: A Thermostat Simulation 505
10.13	Epilogue and References 511

467

10.14 Exercises 511

PART V ADVANCED TOPICS FOR AI PROBLEM SOLVING

Natural Language, Automated Reasoning, and Learning 517

	• •	
11	UNDERSTANDING NATURAL LANGUAGE 519	
11.0	Role of Knowledge in Language Understanding 519	
11.1	Language Understanding: A Symbolic Approach 522	
	11.1.1 Introduction 52211.1.2 Stages of Language Analysis 523	
11.2	Syntax 524	
	11.2.1 Specification and Parsing Using Context-Free Grammars 524 12.4 Further Issues in Automated Reasoning 593 12.4.1 Uniform Representations for Weak Method Solutions 59 12.4.2 Alternative Inference Rules 597 12.4.3 Search Strategies and Their Use 599)3
	12.5 Epilogue and References 600	
	12.6 Exercises 601	
	13 MACHINE LEARNING: SYMBOL-BASED 603	
	13.0 Introduction 603	
	13.1 A Framework for Symbol-based Learning 606	
	13.2 Version Space Search 612	
	13.2.1 Generalization Operators and the Concept Space 612 13.2.2 The Candidate Elimination Algorithm 613 13.2.3 LEX: Inducing Search Heuristics 620 13.2.4 Evaluating Candidate Elimination 623	

12	AUTOMATED REASONING 559
12.0	Introduction to Weak Methods in Theorem Proving 559
12.1	The General Problem Solver and Difference Tables 560
12.2	Resolution Theorem Proving 566
	12.2.1 Introduction 566
	12.2.2 Producing the Clause Form for Resolution Refutations 568
	12.2.3 The Binary Resolution Proof Procedure 573
	12.2.4 Strategies and Simplification Techniques for Resolution 578
	12.2.5 Answer Extraction from Resolution Refutations 583
12.3	PROLOG and Automated Reasoning 587
	12.3.1 Introduction 587
	12.3.2 Logic Programming and PROLOG 588
12.4	Further Issues in Automated Reasoning 593
	12.4.1 Uniform Representations for Weak Method Solutions 593
	12.4.2 Alternative Inference Rules 597
	12.4.3 Search Strategies and Their Use 599
12.5	Epilogue and References 600
12.6	Exercises 601
13	MACHINE LEARNING: SYMBOL-BASED 603
13.0	Introduction 603
13.1	A Framework for Symbol-based Learning 606
13.2	Version Space Search 612
	13.2.1 Generalization Operators and the Concept Space 612
	13.2.2 The Candidate Elimination Algorithm 613
	13.2.3 LEX: Inducing Search Heuristics 620

Evaluating Candidate Elimination 623

13.3	The ID3 Decision Tree Induction Algorithm 624
	13.3.1 Top-Down Decision Tree Induction 627
	13.3.2 Information Theoretic Test Selection 628
	13.3.3 Evaluating ID3 632
	13.3.4 Decision Tree Data Issues: Bagging, Boosting 632
13.4	Inductive Bias and Learnability 633
	13.4.1 Inductive Bias 634
	13.4.2 The Theory of Learnability 636
13.5	Knowledge and Learning 638
	13.5.1 Meta-DENDRAL 639
	13.5.2 Explanation-Based Learning 640
	13.5.3 EBL and Knowledge-Level Learning 645
	13.5.4 Analogical Reasoning 646
13.6	Unsupervised Learning 649
	13.6.1 Discovery and Unsupervised Learning 649
	13.6.2 Conceptual Clustering 651
	13.6.3 COBWEB and the Structure of Taxonomic Knowledge 653
13.7	Epilogue and References 658
13.8	Exercises 659
14	MACHINE LEARNING: CONNECTIONIST 661
14.0	Introduction 661
14.1	Foundations for Connectionist Networks 663
	14.1.1 Early History 663
14.2	Perceptron Learning 666
	14.2.1 The Perceptron Training Algorithm 666
	14.2.2 An Example: Using a Perceptron Network to Classify 668
	14 2 3 The Delta Rule 672

\				
14.3	Backpropagation Learning 675			
	14.3.1	Deriving the Backpropagation Algorithm 675		
	14.3.2	Backpropagation Example 1: NETtalk 679		
	14.3.3	Backpropagation Example 2: Exclusive-or 681		
14.4	4.4 Competitive Learning 682			
	14.4.1	Winner-Take-All Learning for Classification 682		
	14.4.2	A Kohonen Network for Learning Prototypes 684		
	14.4.3	Grossberg Learning and Counterpropagation 686		
14.5	Hebbia	n Coincidence Learning 690		
	14.5.1	Introduction 690		
	14.5.2	An Example of Unsupervised Hebbian Learning 691		
	14.5.3	Supervised Hebbian Learning 694		
	14.5.4	Associative Memory and the Linear Associator 696		
14.6	Attracto	r Networks or "Memories" 701		
	14.6.1	Introduction 701		
	14.6.2	BAM, the Bi-directional Associative Memory 702		
	14.6.3	Examples of BAM Processing 704		
	14.6.4	Autoassociative Memory and Hopfield Nets 706		
14.7	Epilogue and References 711			
14.8	Exercise	s 712		
15	MACHIN	IE LEARNING: SOCIAL AND EMERGENT 713		
		•		
15.0	Social and Emergent Models of Learning 713			
15.1	The Genetic Algorithm 715			
	15.1.3	Two Examples: CNF Satisfaction and the Traveling Salesperson 7	17	
		Evaluating the Genetic Algorithm 721	1/	
15.2	Classifier Systems and Genetic Programming 725			
	15.2.1	Classifier Systems 725		
	15.2.2 P	rogramming with Genetic Operators 730		

٠.					
15.3	Artificial Life and Society-based Learning 736				
	15.3.1 The "Game of Life" 737				
	15.3.2 Evolutionary Programming 740				
	15.3.3 A Case Study in Emergence (Crutchfield and Mitchell 1994) 743				
15.4	Epilogue and References 747				
15.5	Exercises 748				
PAR [*]	· VI				
	OGUE				
Reflect	ons on the Nature of Intelligence 751				
16	ARTIFICIAL INTELLIGENCE AS EMPIRICAL				
-	ENQUIRY 753				
16.0	Introduction 753				
16.1	Artificial Intelligence: A Revised Definition 755				
	16.1.1 Intelligence and the Physical Symbol System 756				
	16.1.2 Minds, Brains, and Neural Computing 759				
	16.1.3 Agents, Emergence, and Intelligence 761				
	16.1.4 Situated Actors and the Existential Mind 764				
16.2	Cognitive Science: An Overview 766				
	16.2.1 The Analysis of Human Performance 766				
	16.2.2 The Production System and Human Cognition 767				
16.3	Current Issues in Machine Learning 770				
1,6.4	Understanding Intelligence: Issues and Directions 775				
16. 5	Epilogue and References 780				
Author Subjec	raphy 781 Index 803 t Index 809 Wedgements 823				